2

# Interpolation with Radial Basis Function

Unsolved
###### Data Wrangling

Difficulty: 2 | Problem written by Mr. Umair
The Radial Basis Function (RBF) is used for high order unstructured data.

Given a dataset of highly volatile points, your program will interpolate following xAxis and yAxis using the RBF and find values for 2.1, 2.2 ... 2.9 by using scipy.interpolate module.

Input:

xAxis (Time) =  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

yAxis  (stock data) =  [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

values= [2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]

Output:

result= [5.192301561478554, 5.386931448583695, 5.58394431915073, 5.783145618400813, 5.984167254355487, 6.186541866914908, 6.389766787481696, 6.593355817498477, 6.796880271933929]

##### Sample Input:
<class 'list'>
xAxis: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
<class 'list'>
yAxis: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
<class 'list'>
values: [2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9]

##### Expected Output:
<class 'list'>
[5.192301561478554, 5.386931448583695, 5.58394431915073, 5.783145618400813, 5.984167254355487, 6.186541866914908, 6.389766787481696, 6.593355817498477, 6.796880271933929]

MLPro Premium also allows you to access all our high quality MCQs which are not available on the free tier.

Not able to solve a problem? MLPro premium brings you access to solutions for all problems available on MLPro

Have an issue, the MLPro support team is available 24X7 to Premium users.