1

Normality Tests (Skewness and Kurtosis)

Unsolved
Data Efficiency

Difficulty: 2 | Problem written by Mr. Umair
The measure of symmetry in data is known as skewness whose with a value of 0 for a normal distribution, negative for a left skewed distribution, and positive for right skewed data. Kurtosis is used to check whether the data is highly or lightly tailed toward normal distribution. It can be shown using positive and negative values.

For the given array, find the values of skewness and kurtosis using scipy.stats. Your function will return a 2 elemen array with skewness and kurtosis respectively.

Input:

arr = [-0.15, -0.8, 0.87, 0.75, 0.42, 0.17, -0.65, 2.62, -0.09, 0.03]

Output:

result = [1.2774072476351053, 1.2810973609764282]

Sample Input:
<class 'list'>
arr: [-0.15, -0.8, 0.87, 0.75, 0.42, 0.17, -0.65, 2.62, -0.09, 0.03]

Expected Output:
<class 'list'>
[1.2774072476351053, 1.2810973609764282]

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Molestiae asperiores hic sapiente non neque in, cupiditate perferendis itaque id harum sequi. Labore repellendus autem magnam debitis temporibus. Ad illum explicabo inventore nesciunt dolorem, nesciunt dolor ipsa tempora molestiae quisquam temporibus architecto quam, hic itaque rem autem?

Maxime quam delectus, eius odio nostrum rem unde quia fugiat doloremque distinctio qui saepe, qui eum autem culpa laboriosam quod dignissimos vel sapiente inventore repudiandae? Laudantium pariatur illum quaerat maiores ad consequuntur eveniet, in corrupti aliquid expedita deleniti eligendi tenetur minima voluptas quae quas assumenda, delectus beatae placeat?

Enim earum animi voluptate tempore quod nesciunt nostrum iure cum, perspiciatis eum quas perferendis enim vel nostrum, autem cumque ratione quos obcaecati quas? Provident iste ut ab, sed assumenda voluptas hic, debitis ad itaque assumenda iusto quam ex ducimus? Ab consequuntur dolorum id, blanditiis necessitatibus neque labore laboriosam provident modi omnis dolores natus quam, odit nihil molestiae repellat laborum fugit doloribus, mollitia laborum aliquid nobis porro repellat quam iste asperiores, dicta similique eaque magni nihil expedita eum quidem.

This is a premium feature.
To access this and other such features, click on upgrade below.

Ready.

Input Test Case

Please enter only one test case at a time
numpy has been already imported as np (import numpy as np)